Alternative conceptions about the concept of slope in high school students of a rural area
DOI:
https://doi.org/10.33010/ie_rie_rediech.v15i0.1942Keywords:
Alternative conceptions, slope, task based interviews, rural areaAbstract
This paper reports the results of a research whose objective was to identify alternative conceptions about the concept of slope in high school students of a rural area. A task-based interview was used to collect data from twenty-eight 12th grade students, and the thematic analysis method was used for their respective analysis. The alternative conceptions of the slope identified were: the length of a line segment, an object, a linear equation or some element of it, the value of the angle of inclination of a line, a concept proper or characteristic of lines, the distance from the x axis to a point on it, the slope of a line graphically represents a point on the cartesian plane, and the sign of the slope is determined by the sign of the semi x axis where the graph is located. These results invite us to reflect on future research to promote an improvement in learning about the concept of slope.
References
Abouchedid, K., y Nasser, R. (2000). The role of presentation and response format in understanding, preconceptions and alternative concepts in algebra problems. United States Department of Education. https://files.eric.ed.gov/ fulltext/ED438174.pdf
Abreu, R., Dolores, C., Sánchez, J. L., y Sigarreta, J. M. (2020). El concepto de pendiente: estado de la investigación y prospectivas. Números, 103, 81-98. http://ri.uagro.mx/bitstream/handle/uagro/1960/ART_6385_20.pdf
Agudelo-Valderrama, C., y Martínez, D. (2016). In pursuit of a connected way of knowing: The case of one mathematics teacher. International Journal of Science and Mathematics Education, 14(4), 719-737. https://www.researchgate.net/publication/270511027_In_Pursuit_of_a_Connected_Way_of_Knowing_The_Case_of_One_Mathematics_Teacher
An, S., y Wu, Z. (2012). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analyzing misconceptions in homework. International Journal of Science and Mathematics Education, 10, 717-753. https://link.springer.com/article/10.1007/s10763-011-9324-x
Billings, E., y Klanderman, D. (2000). Graphical representations of speed: Obstacles preservice K-8 teachers experience. School Science and Mathematics, 100(8), 440-450. https://doi.org/10.1111/j.1949-8594.2000.tb17332.x
Birgin, O. (2012). Investigation of eighth-grade students’ understanding of the slope of the linear function. Bolema: Boletim de Educação Matemática, 26(42a), 139-162. https://doi.org/10.1590/S0103-636X2012000100008
Blanco, B., y Blanco, L. J. (2009). Contextos y estrategias en la resolución de problemas de primaria. Números, 71, 75-85. https://funes.uniandes.edu.co/funes-documentos/contextos-y-estrategias-en-la-resolucion-de-problemas-de-primaria/
Bostan, A. (2016). Conceptual level of understanding about sound concept: Sample of fifth grade students. e-International Journal of Educational Research, 7(1), 87-97. https://files.eric.ed.gov/fulltext/ED565788.pdf
Braun, V., y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. http://dx.doi.org/10.1191/1478088706qp063oa
Braun, V., y Clarke, V. (2012). Thematic analysis. En H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf y K. J. Sher (eds.), APA handbook of research methods in psychology, vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-004
Byerley, C., y Thompson, P. (2017). Secondary mathematics teachers’ meanings for measure, slope, and rate of change. The Journal of Mathematical Behavior, 48(1), 168-193. https://doi.org/10.1016/j.jmathb.2017.09.003
Carlson, M., Jacobs, S., Coe, E., Larsen, S., y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
Chhabra, M., y Baveja, B. (2012). Exploring minds: Alternative conceptions in science. Procedia - Social and Behavioral Sciences, 55, 1069-1078. https://doi.org/10.1016/j.sbspro.2012.09.599
Chi, M. T. H., Roscoe, R. D., Slotta, J. D., Roy, M., y Chase, C. C. (2012). Misconceived causal explanations for emergent processes. Cognitive Science, 36(1), 1-61. https://doi.org/10.1111/j.1551-6709.2011.01207.x
Cho, P., y Nagle, C. (2017). Procedural and conceptual difficulties with slope: An analysis of students’ mistakes on routine tasks. International Journal of Research in Education and Science, 3(1), 135-150. https://files.eric.ed.gov/fulltext/EJ1126738.pdf
Choy, B., Lee, M., y Mizzi, A. (2015). Textbook signatures: An exploratory study of the notion of gradient in Germany, Singapore and South Korea. En K. Beswick, T. Muir y J. Wells (eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (pp. 161-168). PME. https://www.researchgate.net/publication/280301687_TEXTBOOK_SIGNATURES_AN_EXPLORATORY_STUDY_OF_THE_NOTION_OF_GRADIENT_IN_GERMANY_SINGAPORE_AND_SOUTH_KOREA
Clarkson, P. C. (2004). Teaching mathematics in multilingual classrooms: The global importance of contexts. En I. P. Cheong, H. S. Dhindsa, I. J. Kyeleve y O. Chukwu (eds.), Globalisation trends in science, mathematics and technical education (pp. 9-23). Universiti Brunei Darussalam. https://acuresearchbank.acu.edu.au/item/89v82/teaching-mathematics-in-multilingual-classrooms-the-global-importance-of-contexts
Coe, E. E. (2007). Modeling teachers’ ways of thinking about rate of change [Tesis de Doctorado no publicada]. Arizona State University. http://pat-thompson.net/PDFversions/Theses/2007Ted.pdf
Confrey, J. (1990). A review of research on students conceptions in mathematics, science and programming. En C. E. Cazden (ed.), Review of research in education (pp. 3-56). American Educational Research Association. https://doi.org/10.2307/1167350
Denbel, D. G. (2014). Students’ misconceptions of the limit concept in a first Calculus course. Journal of Education and Practice, 5(34), 24-40. https://core.ac.uk/download/pdf/234636567.pdf
Dolores-Flores, C., e Ibáñez-Flores, G. (2020). Conceptualizaciones de la pendiente en libros de texto de matemáticas. Bolema: Boletim de Educação Matemática, 34(67), 825-846. https://doi.org/10.1590/1980-4415v34n67a22
Dolores, C. (2004). Acerca del análisis de funciones a través de sus gráficas: concepciones alternativas en estudiantes de bachillerato. Revista Latinoamericana de Investigación en Matemática Educativa, 7(3), 195-218. https://www.redalyc.org/pdf/335/33570301.pdf
Dolores, C., Alarcón, G., y Albarrán, D. (2002). Concepciones alternativas sobre las gráficas cartesianas del movimiento: el caso de la velocidad y la trayectoria. Revista Latinoamericana de Investigación en Matemática Educativa, 5(3), 225-250. https://n9.cl/ha4qw
Dolores, C., Rivera, M. I., y Moore-Russo, D. (2020). Conceptualizations of slope in Mexican intended curriculum. School Science and Mathematics, 120(2), 104-115. https://doi.org/10.1111/ssm.12389
Dolores-Flores, C., Rivera-López, M. I., y García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050
Fujii, T. (2020). Misconception and alternative conceptions in mathematics education. En S. Lerman (ed.), Encyclopedia of Mathematics Education (pp. 625-627). Springer. https://doi.org/10.1007/978-3-030-15789-0_114
García-García, J. (2014). El contexto cultural y la resolución de problemas: vistos desde el salón de clases de una comunidad Ñuu Savi. Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática, 7(1), 50-73. https://www.redalyc.org/articulo.oa?id=274030901003
García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario [Tesis de Doctorado inédita]. Universidad Autónoma de Guerrero. https://www.researchgate.net/profile/Javier_Garcia-Garcia4
Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. En A. E. Kelly y R. A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates. https://www.researchgate.net/profile/Gerald-Goldin/publication/313744920_A_scientific_perspective_on_structured_task-based_interviews_in_mathematics_education_research/links/5beb10d64585150b2bb4d8cd/A-scientific-perspective-on-structured-task-based-interviews-in-mathematics-education-research.pdf
Juárez, D., y Rodríguez, C. R. (2016). Factores que afectan a la equidad educativa en escuelas rurales de México. Revista de Investigación Educacional Latinoamericana, 53(2), 1-15. https://doi.org/10.7764/PEL.53.2.2016.8
Kaplan, A., Ozturk, M., y Ocal, M. F. (2015). Relieving of misconceptions of derivative concept with derive. International Journal of Research in Education and Science, 1(1), 64-74. https://files.eric.ed.gov/fulltext/ED564414.pdf
Kastberg, S. E. (2002). Understanding mathematical concepts: the case of the logarithmic function [Tesis de Doctorado no publicada]. University of Georgia. https://jwilson.coe.uga.edu/Pers/Dissertations/kastberg_signe_e_200205_phd.pdf
Lehmann, C. H. (1980). Geometría analítica. Limusa. https://www.cimat.mx/ciencia_para_jovenes/bachillerato/libros/[Lehmann]GeometriaAnalitica.pdf
Lobato, J., y Thanheiser, E. (2002). Developing understanding of ratio as measure as a foundation for slope. En B. Litwiller y G. Bright (eds.), Making sense of fractions, ratios, and proportions: 2002 yearbook (pp. 162-175). National Council of Teachers of Mathematics. https://www.researchgate.net/publication/264860927_Developing_understanding_of_ratio_as_measure_as_a_foundation_for_slope
López, G., y Tinajero, G. (2011). Los maestros indígenas ante la diversidad étnica y lingüística en contextos de migración. Cuadernos de Comillas, 1, 5-21. https://aulaintercultural.org/2011/07/17/los-maestros-indigenas-ante-la-diversidad-etnica-y-linguistica-en-contextos-de-migracion/
López, L., Beltrán, A., y Pérez, M. A. (2014). Deserción escolar en universitarios del centro universitario UAEM Temascaltepec, México: estudio de caso de la licenciatura de Psicología. Revista Iberoamericana de Evaluación Educativa, 7(1), 91-104. https://revistas.uam.es/riee/article/view/3390
Lucariello, J., Tine, M. T., y Ganley, C. M. (2014). A formative assessment of students’ algebraic variable misconceptions. Journal of Mathematical Behavior, 33, 30-41. https://doi.org/10.1016/j.jmathb.2013.09.001
Mahmud, M., y Gutiérrez, O. (2010). Estrategia de enseñanza basada en el cambio conceptual para la transformación de ideas previas en el aprendizaje de las ciencias. Formación Universitaria, 3(1), 11-20. https://www.scielo.cl/pdf/formuniv/v3n1/art03.pdf
Mevarech, Z., y Kramarsky, B. (1997). From verbal description to graphic representation: Stability and change in students' alternative conceptions. Educational Studies in Mathematics, 32(3), 229-263. https://doi.org/10.1023/A:1002965907987
Moore-Russo, D., Conner, A., y Rugg, K. (2011). Can slope be negative in 3-space? Studying concept image of slope through collective definition construction. Educational Studies in Mathematics, 76(1), 3-21. https://link.springer.com/article/10.1007/s10649-010-9277-y
Nagle, C., y Moore-Russo, D. (2013). The concept of slope: Comparing teachers’ concept images and instructional content. Investigations in Mathematics Learning, 6(2), 1-18. https://www.researchgate.net/publication/261348486_The_Concept_of_Slope_Comparing_Teachers'_Concept_Images_and_Instructional_Content
Nagle, C., y Moore-Russo, D. (2014). Slope across the curriculum: Principles and standards for school mathematics and common core state standards. The Mathematics Educator, 23(2), 40-59. https://files.eric.ed.gov/fulltext/EJ1027058.pdf
Narjaikaewa, P. (2013). Alternative conceptions of primary school teachers of science about force and motion. Procedia - Social and Behavioral Sciences, 88(2), 250-257. https://www.researchgate.net/publication/275542437_Alternative_Conceptions_of_Primary_School_Teachers_of_Science_about_Force_and_Motion
Osborne, R. J., y Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 498-508. https://doi.org/10.1002/sce.3730670406
Planea [Plan Nacional para la Evaluación de los Aprendizajes] (2018). Resultados nacionales de logro en EMS. Lenguaje y comunicación, matemáticas. Instituto Nacional para la Evaluación de la Educación.
Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., e Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414. https://doi.org/10.1007/s10763-012-9344-1
Rivera, M. I., y Dolores, C. (2021). Preconcepciones de pendiente en estudiantes de educación secundaria. Enseñanza de las Ciencias, 39(1), 195-217. https://doi.org/10.5565/rev/ensciencias.3045
Rivera, M. I., Salgado, G., y Dolores, C. (2019). Explorando las conceptualizaciones de la pendiente en estudiantes universitarios. Bolema, 33(65), 1027-1046. http://dx.doi.org/10.1590/1980-4415v33n65a03
Salgado, G. (2020). Conceptualizaciones de pendiente que poseen los profesores del bachillerato y las que enseñan a sus estudiantes [Tesis de Doctorado inédita]. Universidad Autónoma de Guerrero. http://ri.uagro.mx/bitstream/handle/uagro/3834/TD_5142653_20.pdf
Salgado, G., Rivera, M. I., y Dolores, C. (2020). Conceptualizaciones de pendiente: contenido que enseñan los profesores del bachillerato. Unión - Revista Iberoamericana de Educación Matemática, 15(57), 41-56. https://n9.cl/uil5j1
Schmelkes, S. (2014). El derecho a la educación. En El derecho a una educación de calidad. Informe 2014. Instituto Nacional de Evaluación Educativa. https://www.inee.edu.mx/wp-content/uploads/2018/12/P1D239-1.pdf
Serhan, D. (2015). Students’ understanding of the definite integral concept. International Journal of Research in Education and Science, 1(1), 84-88. https://files.eric.ed.gov/fulltext/EJ1105099.pdf
Stanton, M., y Moore-Russo, D. (2012). Conceptualizations of slope: A review of state standards. School Science and Mathematics, 112(5), 270-277. https://doi.org/10.1111/j.1949-8594.2012.00135.x
Stewart, J. (2012). Cálculo de una variable: Trascendentes tempranas. (7a. ed.) Cengage Learning. https://eva.interior.udelar.edu.uy/pluginfile.php/96366/mod_resource/content/1/Stewart.%20C%C3%A1lculo%20de%20una%20variable..pdf
Stump, S. (2001). High school precalculus students’ understanding of slope as measure. School Science and Mathematics, 101(2), 81-89. https://doi.org/10.1111/j.1949-8594.2001.tb18009.x
Wilhelm, J. A., y Confrey, J. (2003). Projecting rate of change in the context of motion onto the context of money. International Journal of Mathematical Education in Science and Technology, 34(6), 887-904. https://doi.org/10.1080/00207390310001606660
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gerardo Salgado-Beltrán, Javier García-García
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.