Mathematical connections promoted in Mexican middle school and high school level study plans and programs about the concept of quadratic equation
DOI:
https://doi.org/10.33010/ie_rie_rediech.v13i0.1485Keywords:
Mathematical connections, quadratic equation, curricula, content analysisAbstract
The aim of this research is to identify the mathematical connections promoted in Mexican middle school and high school level study plans and programs about the quadratic equation concept. Mathematical connections are those relationships between two or more ideas, concepts, definitions, theorems, procedures, representations, or meanings with each other, with those and other disciplines, or with real-world situations. These are fundamental to conceptualize the discipline itself, in the teaching-learning processes and assessment standards. This research is qualitative and content analysis method was used for analyzing the selected official documents. Results indicated that the mathematical connections types promoted in these official documents are procedural, feature, different representations, modeling, meaning and part-whole. Finally, some ideas about future research with the mathematical connections approach are raised.
References
Aguilar, S., y Barroso, O. (2015). La triangulación de datos como estrategia en investigación educativa. Pixel-bit. Revista de Medios y Educación, (47), 73-88. https://www.redalyc.org/pdf/368/36841180005.pdf
Bardin, L. (1997). Análise de conteúdo. Edições 70. https://ia802902.us.archive.org/8/items/bardin-laurence-analise-de-conteudo/bardin-laurence-analise-de-conteudo.pdf
Begg, A. (2001). Ethnomathematics: Why, and what else? ZDM – The International Journal on Mathematics Education, 33(3), 71-74. https://subs.emis.de/journals/ZDM/zdm013a2.pdf
Bingölbali, E., y Coskun, M. (2016). A proposed conceptual framework for enhancing the use of making connections skill in mathematics teaching. Egitim ve Bilim, 41(183), 233-249. https://doi.org/10.15390/EB.2016.4764
Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Tesis de Doctorado no publicada]. Simon Fraser University.
Campo-Meneses, K. G., y García-García, J. (2021). La comprensión de las funciones exponencial y logarítmica: una mirada desde las conexiones matemáticas y el enfoque ontosemiótico. PNA, 16(1), 25-56. https://doi.org 10.30827/pna.v16i1.15817
Carraher, D., y Schliemann, A. D. (2014). Early algebra teaching and learning. En S. Lerman (ed.), Encyclopedia of Mathematics education (pp. 249-252). Springer.
De Gamboa, G., y Figueiras, L. (2014). Conexiones en el conocimiento matemático del profesor: propuesta de un modelo de análisis. En M. T. González, M. Codes, D. Arnau y T. Ortega (eds.), Investigación en educación matemática XVIII (pp. 337-344). SEIEM.
Didis, M. (2018). Secondary school students’ conception of quadratic equations with one unknown. International Journal for Mathematics Teaching and Learning, 19(1), 112-129. https://www.cimt.org.uk/ijmtl/index.php/IJMTL/article/view/94
Didis, M. G., y Erbas, A. K. (2015). Performance and difficulties of students in formulating and solving quadratic equations with one unknown. Educational Sciences: Theory and Practice, 15(4), 1137-1150. https://files.eric.ed.gov/fulltext/EJ1100800.pdf
DGB (2017). Programa de estudios primer semestre 2017. Matemáticas I. https://www.dgb.sep.gob.mx/informacion-academica/programas-de-estudio.php
Dolores, C., y García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de cálculo en contexto: Un estudio de casos en el nivel superior. Bolema: Boletim de Educação Matemática, 31(57), 158-180. https://www.scielo.br/pdf/bolema/v31n57/0103-636X-bolema-31-57-0158.pdf
Dolores-Flores, C., Rivera-López, M., y García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050
Eli, J., Mohr-Schroeder, M., y Lee, C. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23, 297-319. https://doi.org/10.1007/s13394-011-0017-0
Evitts, T. A. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula [Tesis de Doctorado no publicada]. Pennsylvania State University College of Education.
Garbín, S. (2005). ¿Cómo piensan los alumnos entre 16 y 20 años el infinito? La influencia de los modelos, las representaciones y los lenguajes matemáticos. Revista Latinoamericana de Investigación en Matemática Educativa, 8(2), 169-193. https://www.redalyc.org/pdf/335/33580205.pdf
García-García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario [Tesis de Doctorado no publicada]. Universidad Autónoma de Guerrero.
García-García, J. (2019). Escenarios de exploración de conexiones matemáticas. Números, 100, 129-133. http://www.sinewton.org/numeros/numeros/100/Articulos_24.pdf
García-García, J., y Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994
García-García, J., y Dolores-Flores, C. (2021a). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33, 1-22. https://doi.org/10.1007/s13394-019-00286-x
García-García, J., y Dolores-Flores, C. (2021b). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912-936. https://doi.org/10.1080/0020739X.2020.1729429
Güner, P. (2017). High school students’ achievement of solving quadratic equations. Bartin University Journal of Faculty Education, 6(2), 447-467. https://doi.org/10.14686/buefad.277494
Hausberger, T. (2020). Abstract algebra teaching and learning. En S. Lerman (ed.), Encyclopedia of Mathematics education (pp. 5-9). Springer.
Karakoç, G., y Alacacý, C. (2015). Real world connections in high school mathematics curriculum and teaching. Turkish Journal of Computer and Mathematics Education, 6(1), 31-46. https://doi.org/10.16949/turcomat.76099
Kieran, C. (2018). Algebra teaching and learning. En S. Lerman (ed.), Encyclopedia of Mathematics education (pp. 36-44). Springer.
Kotsopoulos, D. (2007). Unravelling student challenges with quadratics: A cognitive approach. Australian Mathematics Teacher, 63(2), 19-24. https://files.eric.ed.gov/fulltext/EJ769977.pdf
López, J., Robles, I., y Martínez-Planell, R. (2016). Students’ understanding of quadratic equations. International Journal of Mathematical Education in Science and Technology, 47(4), 552-572. https://doi.org/10.1080/0020739X.2015.1119895
McCarthy, J. (2020). Solving quadratic equations activity and revisions. Ohio Journal of School Mathematics, 84(1), 71-90. https://library.osu.edu/ojs/index.php/OJSM/article/view/6997/5549
NCTM [Consejo Nacional de Profesores de Matemáticas] (2014). Principles to action: Ensuring mathematical success for all. Nacional Council of Teachers of Mathematics.
Özgen, K. (2013). Problem çözme baglaminda matematiksel iliþkilendirme becerisi: ögretmen adaylari örnegi. NWSA-Education Sciences, 8(3), 323-345. https://dergipark.org.tr/tr/download/article-file/185390
Presmeg, N. (2006). Semiotics and the “connections” standard: significance of semiotics for teachers of mathematics. Educational Studies in Mathematics, (61), 163-182.
SEP [Secretaría de Educación Pública] (2015). Telebachillerato Comunitario 2015. Matemáticas I. https://www.dgb.sep.gob.mx/servicios-educativos/telebachillerato/LIBROS/1-semestre-2016/Matematicas-I.pdf
SEP (2017a). Plan y programa de estudio para la educación básica 2017. https://www.planyprogramasdestudio.sep.gob.mx/
SEP (2017b). Plan y programas de estudio, orientaciones didácticas y sugerencias de evaluación, 2017. Matemáticas. Educación secundaria. https://www.planyprogramasdestudio.sep.gob.mx/descargables/biblioteca/secundaria/mate/1-LPM-sec-Matematicas.pdf
SEP (2017c). Programa de estudios del componente básico del marco curricular común de la educación media superior 2017. Álgebra. http://www.sems.gob.mx/work/models/sems/Resource/12615/5/images/BT_Algebra.pdf
Steketee, S., y Scher, D. (2016). Connecting functions in geometry and algebra. Mathematics Teacher, 109(6), 448-455. https://doi.org/10.5951/mathteacher.109.6.0448
UAGro [Universidad Autónoma de Guerrero] (2010). Plan de estudios por competencias 2010. Matemáticas II. https://www.academia.edu/8276396/Plan_de_Estudios_por_Competencias_EMS_UAGro
Vaiyavutjamai, P., y Clements, M. A. (2006). Effects of classroom instruction on students’ understanding of quadratic equations. Mathematics Education Research Journal, 18(1), 47-77. https://doi.org/10.1007/BF03217429
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Javier García-García, Magali Edaena Hernández-Yañez, Martha Iris Rivera López
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.