Predictive models of academic performance based on characteristics of engineering students
DOI:
https://doi.org/10.33010/ie_rie_rediech.v13i0.1426Keywords:
machine learning, decision tree, accuracy, k nearest neighbors, Naïve BayesAbstract
The aim of this research is to propose a methodology to build predictive models of academic performance through characteristics of engineering students in our country and to compare the models using different evaluation metrics. In this study, 228 students who are part of a public University in Mexico participated. Data were collected at the beginning of the course and, by means of three machine learning techniques, the predictive models were built. The characteristics of each model were analyzed and a prediction accuracy of around 65% was achieved. The model with the Naïve Bayes technique was the most suitable for most of the metrics used in the study, mainly to identify students in danger of failure. In addition, it was found that the current average was the most significant characteristic for the prediction of the academic performance of the students participating in the study. The methodology developed can be replicated for other courses and the characteristics of the students can be collected at the beginning of the course or before, allowing the possibility of carrying out intervention strategies for students in danger of failure.
References
Castrillón, O. D., Sarache, W., y Ruiz-Herrera, S. (2020). Prediction of academic performance using artificial intelligence techniques. Formación Universitaria, 13(1), 93-102. https://doi.org/10.4067/S0718-50062020000100093
Contreras, L. E., Fuentes, H. J., y Rodríguez, I. (2020). Academic interruption model using automatic learning algorithms. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(3), 16075-16086. http://www.tjprc.org/publishpapers/2-67-1602700574-IJMPERDJUN20201525.pdf
Cover, T., y Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21-27. http://dx.doi.org/10.1109/TIT.1967.1053964
Díaz, B., Meleán, R., y Marín, W. (2021). Rendimiento académico de estudiantes en educación superior: predicciones de factores influyentes a partir de árboles de decisión. Telos: Revista de Estudios Interdisciplinarios en Ciencias Sociales, 23(3), 616-639. https://doi.org/10.36390/telos233.08
Durairaj, M., y Vijitha, C. (2014). Educational data mining for prediction of student performance using clustering algorithms. International Journal of Computer Science and Information Technologies, 5(4), 5987-5991. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.567.8824&rep=rep1&type=pdf
Estrada, R. I., Zamarripa, R. A., Zúñiga, P. G., y Martínez, I. (2016). Aportaciones desde la minería de datos al proceso de captación de matrícula en instituciones de educación superior particulares. Revista Electrónica Educare, 20(3), 1-21. http://www.redalyc.org/articulo.oa?id=194146862011
Gómez, D., Oviedo, R., y Martínez, E. (2011). Factores que influyen en el rendimiento académico del estudiante universitario. Educación y Humanidades, 5(2), 90-97. http://tecnociencia.uach.mx/numeros/v5n2/data/Factores_que_influyen_en_el_rendimiento_academico_del_estudiante_universitario.pdf
Gutiérrez, J. A., Garzón, J. y Segura, A. M. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formación Universitaria, 14(1), 13-24. http://dx.doi.org/10.4067/S0718-50062021000100013
Han, J. (2012). Data mining: Concepts and techniques. Morgan Kaufmann Publishers.
Hernández, J., Ramírez, M., y Ferri, C. (2004). Introducción a la minería de datos. Pearson.
Juárez, A., Cortés, J., y Coronilla, U. (2014). Aplicación de la inteligencia artificial en la sistematización de procesos educativos. Caso: sistema de detección de riesgo escolar en ESCOM. Revista Iberoamericana de Producción Académica y Gestión Educativa, 1(1), 140-163. https://pag.org.mx/index.php/PAG/article/view/92/140
Kumar, V., y Chadha, A. (2011). An empirical study of the applications of data mining techniques in higher education. International Journal of Advanced Computer Science and Applications, 2(3), 80-84. http://dx.doi.org/10.14569/IJACSA.2011.020314
Márquez, C., Cano, A., Romero, C., y Ventura, S. (2012). Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Applied Intelligence, 38(3), 315-330. http://dx.doi.org/10.1007/s10489-012-0374-8
Martínez, A., Hernández, L. I., Carillo, D., Romualdo, Z., y Hernández, C. P. (2013). Factores asociados a la reprobación estudiantil en la Universidad de la Sierra Sur, Oaxaca. Temas de Ciencia y Tecnología, 17(51), 25-33. https://www.utm.mx/edi_anteriores/temas51/T51_1Ensayo3-FactAsocReprobacion.pdf
Mendoza, A. A., y Herrera, R. J. (2013). Propuesta para la predicción del rendimiento académico de los estudiantes de la universidad del Atlántico, basado en la aplicación del análisis discriminante [Ponencia]. Encuentro Internacional de Educación en Ingeniería, Cartagena de Indias, Colombia. https://acofipapers.org/index.php/eiei/article/view/1442
Montero, E., Villalobos, J., y Valverde, A. (2007). Factores institucionales, pedagógicos, psicosociales y sociodemográficos asociados al rendimiento académico en la Universidad de Costa Rica: un análisis multinivel. Revista Electrónica de Investigación y Evaluación Educativa, 13(2), 215-234. https://www.redalyc.org/articulo.oa?id=91613205
Mueen, A., Zafar, B., y Manzoor, U. (2016). Modeling and predicting students’ academic performance using data mining techniques. International Journal of Modern Education and Computer Science, 8(11), 36-42. http://dx.doi.org/10.5815/ijmecs.2016.11.05
Peña, A. (2014). Review: Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41(4),1432-1462. https://doi.org/10.1016/j.eswa.2013.08.042
Quinlan, J. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.
Ridgell, S. D., y Lounsbury, J. W. (2004). Predicting academic success: general intelligence, “big five” personality traits, and work drive. College Student Journal, 38(4), 607-618. https://psycnet.apa.org/record/2004-22470-015
Romero, C., y Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (applications and reviews), 40(6), 601-618. https://doi.org/10.1109/TSMCC.2010.2053532
Romero, C., y Ventura, S. (2012). Data mining in education. Wiley Interdisciplinary Reviews: Data mining and knowledge discovery, 3(1), 12-27. https://doi.org/10.1002/widm.1075
Salal, Y. K., Abdullaev, S. M., y Kumar, M. (2019). Educational data mining: Student performance prediction in academic. International Journal of Engineering and Advanced Technology, 8(4C), 54-59. https://www.researchgate.net/publication/332369964_Educational_Data_Mining_Student_Performance_Prediction_in_Academic
Sánchez, D. (2009). Agentes inteligentes: diseño e implementación para la enseñanza de la física [Tesis de doctorado]. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN. Repositorio DSpace Tesis IPN. https://tesis.ipn.mx/bitstream/handle/123456789/8108/AGEINTEL.pdf?sequence=1&isAllowed=y
Shahiri, A. M., Husain, W., y Rashid, N. (2015). A review on predicting student’s performance using data mining techniques. Procedia Computer Science, 72, 414-422. https://doi.org/10.1016/j.procs.2015.12.157
Tapasco, O. A., Ruiz, F. J., Osorio, D., y Ramírez, D. (2020). El historial académico de secundaria como factor predictor del rendimiento universitario. Caso de estudio. Revista Colombiana de Educación, 1(81), 147-170. https://doi.org/10.17227/rce.num81-753
Timarán, R., Calderón, A., y Jiménez, J. (2013). Descubrimiento de perfiles de deserción estudiantil con técnicas de minería de datos. Revista Vínculos, 10(1), 373-383. https://doi.org/10.14483/2322939X.4687
Torres, P. C., y Cobo, J. K. (2017). Tecnología educativa y su papel en el logro de los fines de la educación. Educere, 21(68), 31-40. https://dialnet.unirioja.es/servlet/articulo?codigo=6560961
Witten, I., Frank, E., y Hall, M. (2005). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann Publishers.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Andrés Rico Páez, Nora Diana Gaytán Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.