Diagnosis about inferential reasoning in undergraduate students of the economic management area
DOI:
https://doi.org/10.33010/ie_rie_rediech.v12i0.1134Keywords:
statistical reasoning, undergraduate education, learning assessmentAbstract
Within the forefront research areas in the field of statistical education is located the inferential reasoning, as a fundamental tool for decision-making; factor that accentuates its importance in the case of economics and management careers where future professionals must test hypotheses, build confidence intervals and make estimates on populations based on data referring to representative samples. In this sense, the aim of this work is to measure the inferential reasoning of undergraduate students of the Economics-Management area of the University of Guadalajara to diagnose and identify strengths and opportunity areas, which can be used in the implementation of pertinent solutions both in the pedagogical and disciplinary aspects, and thus increase the future performance of students. For this, the CAOS-4 exam was applied to a sample of 326 students; such instrument has been statistically validated for university students and allows determining the level of inferential reasoning. The results found show that students have problems in identifying and formulating hypotheses, they do not understand the probabilistic nature of the conclusions of statistical inference, they misinterpret the confidence intervals and the margin of error.
References
AME (2020). Asociación Mexicana de Estadística. Recuperado de: http://amestad.mx.
Beitz, J. (1998). Helping students learn and apply statistical analysis: A metacognitive approach. Nurse Education, 23(1), 49-51. https://doi.org/10.1097/00006223-199801000-00016.
Cuevas, J. H., e Ibáñez, C. (2008). Estándares en educación estadística: necesidad de conocer la base teórica y empírica que los sustentan. Revista Iberoamericana de Educación Matemática, (15), 33-45. Recuperado de: http://funes.uniandes.edu.co/14850/1/Cuevas2008Est%C3%A1ndares.pdf.
DelMas, R., Garfield, J. B., Ooms, A., y Chance, B. (2007). Assessing students’ conceptual understanding after a first course in Statistics. Statistics Education Research Journal, 6(2), 28-58. https://doi.org/10.1016/j.brat.2010.07.005.
Delucchi, M. (2014). Measuring student learning in social statistics: A pretest-posttest study of knowledge gain. Teaching Sociology, 42(3), 231-239. https://doi.org/10.1177/0092055X14527909.
Doerr, H. M., Delmas, R., y Makar, K. (2017). A modeling approach to the development of students’ informal inferential reasoning. Statistics Education Research Journal, 16(2), 86-115. Recuperado de: http://iase-web.org/documents/SERJ/SERJ16%282%29_Doerr.pdf.
Gibbs, B. G., Shafer, K., y Miles, A. (2017). Inferential statistics and the use of administrative data in US educational research. International Journal of Research and Method in Education, 40(2), 214-220. https://doi.org/10.1080/1743727X.2015.1113249.
Huang, Z. X. (2018). Application of statistical inference in education and teaching. Educational Scienses: Theory and Practice, 18(6), 2782-2793. https://doi.org/10.12738/estp.2018.6.179.
Hubbard, R., Haig, B. D., y Parsa, R. A. (2019). The limited role of formal statistical inference in scientific inference. The American Statistician, 73(sup. 1), 91-98. https://doi.org/10.1080/00031305.2018.1464947.
Makar, K., y Rubin, A. (2017). Learning about statistical inference. En D. Ben-Zvi, K. Makar y J. B. Garfield (eds.), International handbook of research in Statistics education (pp. 261-294). Cham, Suiza: Springer. https://doi.org/10.1007/978-3-319-66195-7_8.
Noll, J., Gebresenbet, M., y Glover, E. D. (2016). A modeling and simulation approach to informal inference: Successes and challenges. The Teaching and Learning of Statistics, 2016(1), 139-150. https://doi.org/10.1007/978-3-319-23470-0_19.
Peñaloza, J. L., y Vargas, C. (2017). Big-data and the challenges for statistical inference and economics teaching and learning. Multidisciplinary Journal for Education, Social and Technological Sciences, 4(1), 64-87. https://doi.org/10.4995/muse.2017.6350.
Pfannkuch, M., y Wild, C. J. (2015). Laying foundations for statistical inference. En S. J. Cho (ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 653-666). Cham, Suiza: Springer. https://doi.org/10.1007/978-3-319-17187-6_36.
Reaburn, R. (2018). Students’ understanding of statistical inference: Implications for teaching. En D. Kember y M. Corbett (eds.), Structuring the thesis (pp. 121-127). Singapur: Springer. https://doi.org/10.1007/978-981-13-0511-5_12.
Rumsey, D. J. (2002). Statistical literacy as a goal for introductory Statistics courses. Journal of Statistics Education, 10(3), 1-12. https://doi.org/10.1080/10691898.2002.11910678.
Sánchez, J. (2010). International statistical literacy project. Recuperado de: http://www.stat.fi/org/tilastokeskus/flyer.pdf.
Tong, C. (2019). Statistical inference enables bad science; statistical thinking enables good science. The American Statistician, 73(1), 246-261. https://doi.org/10.1080/00031305.2018.1518264.
Watson, J. M. (1997). Assessing statistical thinking using the media. En E. Gal y J. B. Garfield (eds.), The assessment challenge in Statistics education (pp. 107-121). Amsterdam, Holanda: IOS Press. Recuperado de: http://iase-web.org/documents/book1/chapter09.pdf.
Weinberg, A., Wiesner, E., y Pfaff, T. J. (2010). Using informal inferential reasoning to develop formal concepts: Analyzing an activity. Journal of Statistics Education, 18(2), 1-24. https://doi.org/10.1080/10691898.2010.11889494.
Zellner, K., Boerst, C. J., y Tabb, W. (2007). Statistics used in current nursing research. Journal Nurse Education, 46(2), 55-59. Recuperado de: https://pdfs.semanticscholar.org/0a00/93cc3d131534073ee13bc3bafb014ac2b46a.pdf.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Salvador Sandoval Bravo, Pedro Luis Celso Arellano, Víctor Hugo Gualajara Estrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.