Vol. 5 No. 2 (2021): Enero-diciembre
Contenido

Obtaining a Learning Analytics model with information from an LMS

Leonardo Nevárez Chávez
Bio
Marisela Ivette Caldera Franco
Tecnológico Nacional de México, campus Chihuahua II, México
Bio
Gregorio Ronquillo Máynez
Tecnológico Nacional de México, campus Chihuahua II, México
Bio

Published 2021-12-10

Keywords

  • Data analysis,
  • academic performance,
  • Moodle platform,
  • analysis models,
  • educational intervention
  • Análisis de datos,
  • rendimiento académico,
  • plataforma Moodle,
  • modelos de análisis,
  • intervención educativa

How to Cite

Nevárez Chávez, L., Caldera Franco, M. I., & Ronquillo Máynez, G. (2021). Obtaining a Learning Analytics model with information from an LMS. RECIE. Revista Electrónica Científica De Investigación Educativa, 5(2), 313-333. https://doi.org/10.33010/recie.v5i2.1314

Abstract

As a result of the teaching and learning process, data in higher education institutions is generated and obtained in different computational systems, such as internal systems, the LMS (Learning Management System), social media, among others. The information obtained from these systems is rarely used for its analysis, feedback, and processes improvement. Considering only one LMS, these produce important information, as students’ logins, sections or seen elements, delivery of homework and its compliance in time limits, as well as the participation in forums and other activities. This research has the purpose of describing the use of the information contained in the logs, which is generated by the Moodle LMS, with the objective of establishing a Learning Analytics model, leading to the prediction of the students’ performance. The model is incorporated in an informatic application through a friendly interface, and it serves to make known the model results to tutors, professors or authorized staff. The application identifies students in academic danger, and it is suggested to be used as a support to decide a possible academic intervention on behalf of students. Simple regression, multiple regression, grouping, and main components analysis techniques are used to obtain different prediction models. The CRISP-DM methodology is applied as a guidance in the development process.

References

  1. Daud, A., Aljohani, N. R., Abbasi, R. A., Lytras, M. D., Abbas, F., y Alowibdi, J. S. (2017). Predicting student performance using advanced learning analytics. En Proceedings of the 26th International Conference on World Wide Web Companion (pp. 415-421). Recuperado de: https://dl.acm.org/doi/abs/10.1145/3041021.3054164.
  2. Dawson, S., Joksimovic, S., Poquet, O., y Siemens, G. (2019). Increasing the impact of learning analytics. En Proceedings of the 9th International Conference on Learning Analytics & Knowledge (pp. 446-455). Recuperado de: https://www.researchgate.net/profile/Srecko_Joksimovic/publication/331333276_Increasing_the_Impact_of_Learning_Analytics/links/5c870c7aa6fdcc88c39bf70e/Increasing-the-Impact-of-Learning-Analytics.pdf.
  3. Gasevic, D., Tsai, Y. S., Dawson, S., y Pardo, A. (2019). How do we start? An approach to learning analytics adoption in higher education. The International Journal of Information and Learning Technology, 36(4), 342-353. Recuperado de: https://research.monash.edu/files/296208063/277681827_oa.pdf.
  4. Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., y Hlosta, M. (2019). A large-scale implementation of predictive learning analytics in higher education: The teachers’ role and perspective. Educational Technology Research and Development, 67(5), 1273-1306. Recuperado de: https://link.springer.com/article/10.1007/s11423-019-09685-0.
  5. Hwang, G.-J., Chu, H. C., y Yin, C. (2017). Objectives, methodologies and research issues of learning analytics. Interactive Learning Environments, 25(2). Recuperado de: https://www.tandfonline.com/doi/full/10.1080/10494820.2017.1287338.
  6. Martínez Navarro, A., y Moreno-Ger, P. (2018). Comparison of clustering algorithms for learning analytics with educational datasets. IJIMAI, 5(2), 9-16. Recuperado de: https://dialnet.unirioja.es/descarga/articulo/6907743.pdf.
  7. Romero, C., y Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. Recuperado de: https://bookdown.org/chen/la-manual/files/Romero%20and%20Ventura%20-%202020.pdf.
  8. Selwyn, N. (2019). What’s the problem with Learning Analytics? Journal of Learning Analytics, 6(3), 11-19. Recuperado de: https://learning-analytics.info/index.php/JLA/article/download/6386/7308.
  9. Sclater, N., Peasgood, A., y Mullan, J. (2016). Learning analytics in higher education. Londres: Jisc. Recuperado de: https://www.academia.edu/download/61301572/learning-analytics-in-he-v320191122-83155-kaxmyg.pdf.
  10. Simanca, F. A., Herrera, R., Crespo, L. G., Baena, R., y Burgos, D. (2019). A solution to manage the full life cycle of learning analytics in a learning management system: AnalyTIC. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje, 14(4), 127-134. Recuperado de: https://ieeexplore.ieee.org/abstract/document/8894865.
  11. Viberg, O., Hatakka, M., Bälter, O., y Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0747563218303492.
  12. Wikipedia (2022, may. 9). Analítica de aprendizaje. Recuperado de: https://es.wikipedia.org/w/index.php?title=Anal%C3%ADtica_de_aprendizaje&oldid=137026001.
  13. Wirth, R., y Hipp, J. (2000, abr.). CRISP-DM: Towards a standard process model for data mining. En Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (vol. 1). Londres: Springer-Verlag. Recuperado de: www.cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf.